On the evolution of the adaptation of Lophopyrum elongatum to growth in saline environments.

نویسندگان

  • J Dvorák
  • M Edge
  • K Ross
چکیده

Most species of the genus Lophopyrum Löve (Agropyron Geartn.) grow in saline environments and are more tolerant of saline stress than the species of the related genus Triticum L. A 56-chromosome amphiploid from the cross Triticum aestivum cv. Chinese Spring x Lophopyrum elongatum exceeded Chinese Spring in salt tolerance, measured as plant dry-matter production and seed yield in solution cultures with 250 mM NaCl. Thus, the adaptation of Lophopyrum to saline environments is expressed in the wheat genetic background. None of the disomic additions or substitutions of L. elongatum chromosomes in Chinese Spring showed a similar level of saline stress tolerance, which indicates that the trait depends on the activity of genes on more than one chromosome. Comparisons of disomic additions, double monosomic additions from half-diallel crosses among disomic additions, and disomic substitutions of L. elongatum chromosomes in Chinese Spring with Chinese Spring indicated that the enhanced salt tolerance of the amphiploid is primarily controlled by genes with minor effects on three of the seven chromosomes, 3E, 4E, and 7E, interacting in a largely additive manner. The salt tolerance of L. elongatum additionally depends on several minor nonadditive gene interactions. It is concluded that the adaptation of L. elongatum to growth in saline environments evolved by accumulation of new alleles in a number of loci, each with a relatively small effect on salt tolerance. It is further inferred that most of these new alleles were codominant to the original alleles and were able to act independently in enhancing salt tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinate Gene Response to Salt Stress in Lophopyrum elongatum.

Lophopyrum elongatum is a highly salt-tolerant relative of wheat. A previous study showed that the abundance of a number of mRNA species is enhanced or reduced in the roots of the L. elongatum x Triticum aestivum amphiploid by salt stress. Eleven genes with enhanced expression in the roots of salt-stressed L. elongatum plants have been cloned as cDNAs. The clones were used as probes to characte...

متن کامل

Relationships among Agropyron, Dasypyrum and Lophopyrum (Triticeae: Poaceae) viewed from isoenzyme variation of esterase, peroxidase and acid phosphatase

Isoenzyme variation of esterase, peroxidase and acid phosphatase was examined in individual plants from natural populations of A. cristatum, D. villosum and L. elongatum. Four indices of phenotypic similarity (SI, S, D, Ih) were calculated in an attempt to assess relationships among the taxa studied. All indices have their lowest estimates in the comparison between L. elongatum and D. villosum....

متن کامل

The role of environments with extreme ecological conditions in the reductive evolutionary development processes of animal

Different groups of animals show phenotypic characters, which have been resulted by the reductive phenomena. The examples are the absence of pigmentation; dwindle of eyes in some cave-living animals, and also the absence of scale in some fishes. These characters are often leaded to evolution of new species with special adaptation that is so called "Regressive evolution". The reductive phenomena...

متن کامل

EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci.

Lophopyrum elongatum, a close relative of wheat, provides a source of novel genes for wheat improvement. Molecular markers were developed to monitor the introgression of L. elongatum chromosome segments into hexaploid wheat. Existing simple sequence repeats (SSRs) derived from genomic libraries were initially screened for detecting L. elongatum loci in wheat, but only 6 of the 163 markers teste...

متن کامل

Task Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing

The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 85 11  شماره 

صفحات  -

تاریخ انتشار 1988